资源类型

期刊论文 57

年份

2023 6

2022 8

2021 8

2020 3

2019 1

2018 3

2017 8

2016 5

2015 2

2014 1

2013 2

2012 1

2011 1

2010 5

2009 1

2000 1

展开 ︾

关键词

微流控 2

液滴 2

生物材料 2

3D打印 1

3D细胞容器 1

Cu(In 1

Ga)Se2 1

乙烷干重整 1

乳液 1

二氧化碳 1

低温 1

克努森蒸发源 1

冷泉 1

凝结 1

分子间和表面间相互作用 1

原子力显微镜 1

反应机理 1

反蛋白石 1

增材制造 1

展开 ︾

检索范围:

排序: 展示方式:

A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of dropletdroplet interactions

《环境科学与工程前沿(英文)》 2022年 第16卷 第3期 doi: 10.1007/s11783-021-1465-8

摘要:

• Coulomb and Lennard−Jones forces were considered for droplet interactions.

关键词: Droplet interactions     Aerosols     Colloids     CFD     Transport     Fate    

Comparison of droplet distributions from fluidic and impact sprinklers

Xingye ZHU,Shouqi YUAN,Junping LIU,Xingfa LIU

《农业科学与工程前沿(英文)》 2015年 第2卷 第1期   页码 53-59 doi: 10.15302/J-FASE-2015049

摘要: To adapt to the trend toward low-energy precision irrigation, the droplet distributions for two new prototype sprinklers, outside signal sprinkler (OS) and fluidic sprinkler (FS), were compared with impact sprinkler (IS). A laser precipitation monitor was used to measure the droplet distributions. Droplet size and velocity distributions were tested under four operating pressures for nozzles 1.5 m above the ground. For the operating pressures tested, the mean OS, FS and IS droplet diameters ranged from 0 to 3.4, 0 to 3.5, 0 to 4.0 mm, respectively. The mean OS and FS droplet velocities ranged from 0 to 6.3 m·s , whereas IS ranged from 0 to 6.3 m·s . Being gas-liquid fluidic sprinklers, droplet distributions of the OS and FS were similar, although not identical. IS mostly produced a 0.5 mm larger droplet diameter and a 0.5 m·s greater velocity than OS and FS. A new empirical equation is proposed for determination of droplet size for OS and FS, which is sufficiently accurate and simple to use. Basic statistics for droplet size and velocity were performed on data obtained by the photographic methods. The mean droplet diameter (arithmetic, volumetric and median) decreased and the mean velocity increased in operating pressure for the three types of sprinkler.

关键词: outside signal sprinkler     fluidic sprinkler     impact sprinkler     sprinkler irrigation     droplet size     droplet velocity    

Pt–C interactions in carbon-supported Pt-based electrocatalysts

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1677-1697 doi: 10.1007/s11705-023-2300-5

摘要: Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt–C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.

关键词: Pt–C interactions     Pt-based materials     carbon support     electrocatalysis    

Analysis of the radiation heat transfer process of phase change for a liquid droplet radiator in space

Jinying YIN, Linhua LIU

《能源前沿(英文)》 2011年 第5卷 第2期   页码 166-173 doi: 10.1007/s11708-010-0105-y

摘要: The optimization of a space power system is greatly affected by the radiation heat transfer in a liquid droplet radiator (LDR). Radiation heat transfer in a two-dimensional bed of phase-change particle is modeled by solving the radiative transfer equation using the discrete ordinates method and the energy equation using the implicit finite difference method. The Mie theory is used to calculate the radiative properties of the droplet bed, whereas the effective medium theory is used to obtain the optical constants of partial solidification droplets. Multiple factors affect heat flux in the LDR, such as size distribution, flow velocity, phase change of droplets, layer thickness, droplet concentration in the layer, and material type of the work fluid; each of these must be analyzed. Calculations show that once size distribution is neglected, the relative error increases significantly. Size distribution has a remarkably strong effect on heat flux when the flow velocity of the working fluid is above 100 m/s. An increase in flow velocity leads to an increase in the total heat flux for the layer with a fixed volume fraction of droplets. The solidification zone occupies nearly half of the layer, and droplets of different sizes exhibit temperature differences to some extent due to local thermal non-equilibrium among them. Droplet concentration in the layer and the material type of the working fluid have strong effects on heat flux, whereas the thickness of the layer has a mild influence on heat flux.

关键词: radiation heat transfer     particle polydispersion     liquid droplet radiator     phase change    

Modeling and simulation of droplet translocation and fission by electrowetting-on-dielectrics (EWOD)

Nathan HOWELL, Weihua LI

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 376-388 doi: 10.1007/s11465-010-0104-z

摘要: This paper discusses methods of microfluidic droplet actuation by means of electrowetting-on-dielectrics (EWOD) and provides a technique for modeling and simulating a microfluidic device by using the computational fluid dynamics (CFD) program, Flow3D. Digital or droplet microfluidics implies the manipulation of droplets on a scale of nanoliters (10 L) to femtoliters (10 L), as opposed to continuous microfluidics that involve the control of continuous fluid within a channel. The two operations in focus here are droplet translocation (moving) and droplet fission (splitting), in which the pressures and velocities within the droplet are analyzed and compared to existing works, both theoretical and experimental. The variation in the pressure of the leading and trailing faces of a droplet indicates the variation in surface energy—an important parameter that explains how a droplet will move toward a region of higher electric potential. The higher voltage on one side of a droplet reduces surface energy, which leads to an induced pressure drop, thus resulting in fluid motion. Flow3D simulations are for both water and blood droplets at voltages between 50 V and 200 V, and the droplet size, surface properties (Teflon coated), and geometry of the system are kept constant for each operation. Some peculiarities of the simulation are brought to light, such as instabilities of the system to higher voltages and fluids with higher dielectric constants, as well as the creation of a tertiary droplet when the applied voltage causes a large enough force during fission. The force distribution across the droplet provides a general understanding of the electrowetting effect and more specifically allows for a comparison between the effects that different voltages have on the forces at the droplet surface. The droplet position and mean kinetic energy of the droplet are also investigated and compared to other works, proving the dynamics of a droplet motion found here.

关键词: electrowetting-on-dielectrics (EWOD)     electrowetting     microfluidics     droplet translocation     droplet fission     Flow3D     dielectric constant    

Dynamical analysis of droplet impact spreading on solid substrate

Zhaomiao LIU, Huamin LIU, Xin LIU,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 308-315 doi: 10.1007/s11465-010-0020-2

摘要: This paper investigates the impact spreading of a droplet on a solid substrate using numerical simulation on the basis of a volume-of-fluid (VOF) model. The process of droplet spreading is described, the analysis of low speed and high speed droplet spreading, and more than one droplet spreading simultaneously is performed. The pressure, velocity, and spreading factor during the droplet spreading are reported. According to the spreading factor’s evolvement, the process of droplet spreading can be classified into spreading phase and recoiling phase. The spreading factors are almost the same at the low speed droplet spreading; however, the pressures on the substrate are quite different and air entrainment may be found as the impact speeds in a certain range. The impact speed impacts on the spreading factors in high speed droplet spreading. The spreading factor obviously increases with increasing impact speed; however, splashing will appear in the status when the speed is high enough in the high speed droplet spreading. The distance between the neighbor droplets affects the film’s quality, and only the distance between the static diameter and the maximum diameter can ensure the film’s quality. The results could help in understanding the process of droplet spreading and provide advice on the operation of a spray coating process.

关键词: droplet     impact spreading     numerical simulation    

Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic

Jingtao WANG, Jin ZHANG, Junjie HAN,

《化学科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 26-36 doi: 10.1007/s11705-009-0292-4

摘要: The recent advances in crystallization and polymerization assisted by droplet-based microfluidics to synthesize micro-particles and micro-crystals are reviewed in this paper. Droplet-based microfluidic devices are powerful tools to execute some precise controls and operations on the flow inside microchannels by adjusting fluid dynamics parameters to produce monodisperse emulsions or multiple-emulsions of various materials. Major features of this technique are producing particles of monodispersity to control the shape of particles in a new level, and to generate droplets of diverse materials including aqueous solutions, gels and polymers. Numerous microfluidic devices have been employed to generate monodisperse droplets of range from nm to μm, such as T junctions, flow-focusing devices and co-flow or cross-flow capillaries. These discrete, independently controllable droplets are ideal microreactors to be manipulated in the channels to synthesize the nanocrystals, protein crystals, polymer particles and microcapsules. The generated monodisperse particles or crystals are to meet different technical demands in many fields, such as crystal engineering, encapsulation and drug delivery systems. Microfluidic devices are promising tools in the synthesis of micron polymer particles that have diverse applications such as the photonic materials, ion-exchange and chromatography columns, and field-responsive rheological fluids. Processes assisted by microfluidic devices are able to produce the polymer particles (including Janus particles) with precise control over their sizes, size distribution, morphology and compositions. The technology of microfluidics has also been employed to generate core-shell microcapsules and solid microgels with precise controlled sizes and inner structures. The chosen “smart” materials are sensitive to an external stimulus such as the change of the pH, electric field and temperature. These complex particles are also able to be functionalized by encapsulating nanoparticles of special functions and by attaching some special groups like targeting ligands. The nucleation kinetics of some crystals like KNO was investigated in different microfluidic devices. Because of the elimination of the interactions among crystallites in bulk systems, using independent droplets may help to measure the nucleation rate more accurately. In structural biology, the droplets produced in microfluidic devices provide ideal platforms for protein crystallization on the nanoliter scale. Therefore, they become one of the promising tools to screen the optimal conditions of protein crystallization.

关键词: core-shell     monodisperse     nucleation     Microfluidic     different technical    

Numerical study of droplet dynamics impinging onto steel plate covered with scale layer

Jan BOHá?EK, Ale? HORáK

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 389-398 doi: 10.1007/s11465-010-0108-8

摘要: The steel hot rolling process is inseparably connected to an oxide layer called “scale” at high temperatures. Hydraulic descaling of rolled material is a part of all rolling trains. Surface quality after descaling is fundamental for the final surface quality of a rolled product. The process itself is not theoretically well described; various different approaches have been used to clarify the descaling problem. This paper describes the dynamics of high-speed impact between the compressible water droplet and the steel scale layer. The phenomenon is known as water hammer effect. The purpose of this study is to numerically verify the fact that impact stress can be a significant factor during the descaling process. Considering a high droplet impact speed (100–300 ms ), inferential extremely short time interval (0.1–5 μs) peaks in impact pressure reaching 300 MPa can be found. Droplet dynamics was simulated with the help of LS-Dyna solver, whereas the stress analysis was performed in ANSYS interface. The extreme pressure peaks of very short duration in an impact area are a new phenomenon in the descaling theory.

关键词: hydraulic descaling     scale     rolling     water-hammer     descaling theory    

Responses of microbial interactions to elevated salinity in activated sludge microbial community

《环境科学与工程前沿(英文)》 2023年 第17卷 第5期 doi: 10.1007/s11783-023-1660-x

摘要:

● Salinity led to the elevation of NAR over 99.72%.

关键词: Elevated salinity     Activated sludge system     Pollution removal     Microbial interactions     Competitive relationship    

Effect of UAV prewetting application during the flowering period of cotton on pesticide droplet deposition

Weixiang YAO, Xianju WANG, Yubin LAN, Ji JIN

《农业科学与工程前沿(英文)》 2018年 第5卷 第4期   页码 455-461 doi: 10.15302/J-FASE-2018232

摘要:

Prewetting process can reduce the contact angle between the droplet and the leaf blade, so that the droplet can more easily wet and spread, thereby increasing the quantity of deposition. To improve the effectiveness of pesticides on cotton leaves, prewetting by single-rotor electric unmanned aerial vehicles (UAV) was studied, focusing on the effects of pesticide deposition on cotton leaves during the flowering period. Cotton leaves in 0°–30°, 30°–60°, 60°–90° leaf blade angle ranges (angle between the leaf blade and the horizontal plane) were examined. In the first experiment, four different prewetting volumes (0, 1.6, 3.2 and 4.8 L) were sprayed by a single-rotor electric UAV on four cotton plots (plots A to D) each with an area of 120 m , and then each area was sprayed with a 0.8% (w/v) ponceau 2R solution by another single-rotor electric UAV. The results revealed that with no prewetting, droplet deposition quantity decreased with increasing leaf blade inclination. After prewetting, the mean droplet deposition quantity on plots B, C and D increased by 39.8%, 9.7% and 24.9%, respectively. The prewetting rate of 1.6 L per 120 m had the most significant effect on improving the deposition of droplets. It was also found that the mean droplet deposition quantity in each leaf blade angle range increased after prewetting. For the leaf blade angle range 60° to 90°, this increase was the most pronounced, with 0.043, 0.062, 0.057 and 0.048 L·cm in plots A–D, respectively. Also, droplet deposition uniformity in the leaf blade angle range 60°–90° was better after prewetting. These results should provide a valuable reference for future research and practice to improve the effectiveness of pesticides applied to cotton by aerial applications.

关键词: aerial spray     cotton     deposition     flowering period     leaf angle     prewetting     UAV    

Water, energy and food interactions–Challenges and opportunities

Gustaf OLSSON

《环境科学与工程前沿(英文)》 2013年 第7卷 第5期   页码 787-793 doi: 10.1007/s11783-013-0526-z

摘要: Water and energy are inextricably linked, and as a consequence both have to be addressed together. This is called the water-energy nexus. When access to either is limited, it becomes obvious that it is necessary to consider their interdependence. Population growth, climate change, urbanization, increasing living standards and food consumption will require an integrated approach where food, water and energy security are considered together. In this paper we examine water, energy and food security and their couplings. The nexus also creates conflicts between water use, energy extraction and generation as well as food production. Some of these conflicts are illustrated. It is argued that there is an urgent need for integrated planning and operation. Not only will better technology be needed, but also better integration of policies, organizations and political decisions.

关键词: water security     energy security     food security     water-energy nexus     water conflicts    

Microfluidics for cell-cell interactions: A review

Rui Li,Xuefei Lv,Xingjian Zhang,Omer Saeed,Yulin Deng

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 90-98 doi: 10.1007/s11705-015-1550-2

摘要: Microfluidic chip has been applied in various biological fields owing to its low-consumption of reagents, high throughput, fluidic controllability and integrity. The well-designed microscale intermediary is also ideal for the study of cell biology. Particularly, microfluidic chip is helpful for better understanding cell-cell interactions. A general survey of recent publications would help to generalize the designs of the co-culture chips with different features. With ingenious and combinational utilization, the chips facilitate the implementation of some special co-culture models that are highly concerned in a different spatial and temporal way.

关键词: microfluidic chip     co-culture     cell-cell interactions     review    

SUSTAINABLE CROP AND PASTURE SYSTEMS: FROM ABOVE- AND BELOWGROUND INTERACTIONS TO ECOSYSTEM MULTIFUNCTIONALITY

《农业科学与工程前沿(英文)》 2022年 第9卷 第2期   页码 167-169 doi: 10.15302/J-FASE-2022446

摘要:

Intensive agriculture, characterized by strong reliance on excessive amount of external agrochemical inputs in simplified cropping systems has contributed successfully to feeding an increasing number of humans, but at the expense of severe resource and environmental costs. Consequently, the Earth is facing multifaceted challenges, including increasing food demand both in quantity and quality, global warming associated with extreme weather events, soil degradation and depletion of natural resources. To address some of these challenges, we have developed this Special Issue on Sustainable Crop and Pasture Systems for Frontiers of Agricultural Sciences and Engineering (FASE). The issue addresses the research frontiers of two main themes: (1) aboveground-belowground ecological and physiological mechanisms, processes and ecosystem functions; and (2) the synergies and trade-offs between multiple ecosystem services in sustainable crop and pasture systems. There are 10 articles in this Special Issue including review and research articles with contributions from Australia, China, France, the Netherlands, and the UK. The contributors are all highly-regarded scientists devoted to studies on mechanisms and applications of sustainable crop and pasture systems.

Sustainable crop and pasture systems have a potential to enhance the synergies in multiple ecosystem services, consisting of higher food production, lower environmental impacts and climate change mitigation. To innovate sustainable cropping systems requires deeper and comprehensive understanding of mechanisms underlying above- and belowground interactions. Hans Lambers and Wen-Feng Cong emphasized the importance of diversifying crop species or genotypes with complementary or facilitative functional traits. This will mediate key ecosystem processes related to water, carbon and nutrients, contributing to higher resource-use efficiency and enhancing synergies in ecosystem services ( https://doi.org/10.15302/J-FASE-2022444). Root functional traits such as root exudates are pivotal in nutrient mobilization, either directly mobilizing plant nutrients in the soil or indirectly so via modifications of the soil microbiome. Cathryn A. O'Sullivan and coworkers reported a novel role of root exudates from canola in inhibiting nitrification in soils. They found that these root exudates (called biological nitrogen (N) inhibitors) can significantly reduce nitrification rates of both Nitrosospira multiformis cultures and native nitrifying communities in soil. This would reduce nitrate losses, but increase plant N uptake and microbial N immobilization, subsequently benefiting the following cereal crops through mineralization of this organic N pool ( https://doi.org/10.15302/J-FASE-2021421). Jonathan Storkey and Andrew J. Macdonald used the longest-lasting grassland biodiversity experiment in the world to examine the relationships between plant functional traits and ecosystem services. They reported a strong trade-off between plots with high productivity, N inputs and soil organic carbon and plots with a large number of plant species with contrasting nutrient-acquisition strategies. An increasing proportion of forbs with greater longevity and lower leaf dry matter content can partly mitigate the trade-offs between plant diversity and productivity ( https://doi.org/10.15302/J-FASE-2021438).

John A. Raven further explored synergies or trade-offs of ecosystem services regulated by above- and belowground interactions, mainly functioning through energy, material and information pathways. Solar energy is the key driver for photosynthesis and transpiration, modulating the flow of water and nutrients in soils moving aboveground and the flow of carbohydrates feeding belowground biota. Information transfer can be through hydraulic, electrical and chemical signaling, regulating plant development, abiotic and biotic damage and resource excess and limitation ( https://doi.org/10.15302/J-FASE-2021433).

Timothy S. George and coauthors highlighted the importance of harnessing biodiversity principles and physiological mechanisms in diversified cropping systems to achieve agricultural sustainability. They demonstrate that crop diversification combined with optimized management such as minimum tillage and reduced fertilizer inputs can improve soil quality, promoting soil biotic activities and associated functions. This will reduce the reliance on agrochemical inputs and environmental impacts, and increase climatic resilience ( https://doi.org/10.15302/J-FASE-2021437). Ruqiang Zhang and coworkers applied the One Health concept to design healthy dairy farms. They employed a wide range of soil and plant diversity measures such as intercropping, crop rotation and flower strips at both field and landscape scales to reduce the inputs of fertilizers, pesticides as well as soil compaction caused by heavy machines. The biodiversity-based solutions can help dairy farmers maintain a healthy eco-environment, while producing high-quality milk ( https://doi.org/10.15302/J-FASE-2022445). Emily C. Cooledge and her colleagues show that introducing multispecies leys with perennial legumes and other forbs into arable rotations will achieve multiple ecosystem benefits. This occurs mainly in three ways—return of livestock manure, permanent soil cover and less disturbance of soil—which promote soil food web interactions and soil aggregate stability, subsequently sequestering more carbon in soils ( https://doi.org/10.15302/J-FASE-2021439). Ting Luo and coauthors used the sugarcane cropping system in China as an example and analyzed the current challenges and problems and proposed a wide range of crop, soil and input management practices such as crop rotation, strategic tillage and optimized nutrient management to achieve sustainable sugarcane cropping systems ( https://doi.org/10.15302/J-FASE-2022442).

Focusing on the multi-objective assessment of different cropping systems, Léa Kervroëdan and coworkers assessed the agronomic and environmental impacts of food, feed and mixed (food, feed and biogas) cropping systems. They found that mixed cropping systems had a greater potential of bioenergy production and agronomic performance, but also higher greenhouse gas emissions. This warrants long-term examination of whether short-term higher greenhouse gas emissions can be offset by long-term soil carbon sequestration in this system ( https://doi.org/10.15302/J-FASE-2021435). Jeroen C. J. Groot and Xiaolin Yang applied a new mathematical approach of evolutionary multi-objective optimization to 30 cropping systems practiced on the North China Plain with the aim of overcoming the trade-offs between revenues, energy and nutrient supply and groundwater depletion at a regional level. This approach allows national or regional policymakers to plan growing area of certain sustainable cropping systems ( https://doi.org/10.15302/J-FASE-2021434).

As the Guest Editors, we thank all authors and reviewers for their valuable contributions to this Special Issue on Sustainable Crop and Pasture Systems. We also thank the FASE editorial team for their professional support.

Dr. Wen-Feng Cong, Associate Professor at College of Resource and Environmental Sciences, China Agricultural University. He obtained his PhD at Wageningen University in the Netherlands and conducted postdoctoral research at Aarhus University in Denmark. His research focuses on understanding the mechanisms underlying the positive effects of crop, genotype and cropping system diversity on soil carbon sequestration and soil phosphorus utilization, and applying the ecological mechanisms to design sustainable diversified cropping systems. He is author of over 30 papers in peer-reviewed scientific journals, including Trends in Plant ScienceTrends in Ecology & Evolution, and Global Change Biology. He is leading or participating in sustainable cropping systems related projects funded by the National Natural Science Foundation of China and the Chinese Academy of Engineering. He is acting as a member of the editorial board of Frontiers in Agronomyand Frontiers in Soil Science.

Dr. Hans Lambers, Emeritus Professor at the University of Western Australia and Distinguished Professor at College of Resource and Environmental Sciences, China Agricultural University. He obtained his PhD at the University of Groningen in the Netherlands and conducted postdoctoral research in Australia and the Netherlands, before taking up a position of Professor of Plant Ecophysiology at Utrecht University in the Netherlands and then Professor of Plant Biology and Ecology at the University of Western Australia in Australia. His research focuses on understanding plant–soil interactions and plant nutrition, with an emphasis on Australian plants and crop legumes. He is author of over 550 papers in peer-reviewed scientific journals, including Annual Review of Plant Biology,Trends in Plant ScienceTrends in Ecology & EvolutionNew PhytologistPlant and Soil,Global Change Biology, andNature Plants. He is leading or participating in projects on plant nutrition funded by the Australian Research Council. He is the lead author of an influential textbook, Plant Physiological Ecology (1998, 2008, and 2019), Editor in Chief of Plant and Soil(1992–present), and Associate Editor in Chief ofFrontiers of Agricultural Sciences and Engineering

THE 4C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY

《农业科学与工程前沿(英文)》 2021年 第8卷 第3期   页码 387-399 doi: 10.15302/J-FASE-2021414

摘要:

Modern agriculture needs to develop transition pathways toward agroecological, resilient and sustainable farming systems. One key pathway for such agroecological intensification is the diversification of cropping systems using intercropping and notably cereal-grain legume mixtures. Such mixtures or intercrops have the potential to increase and stabilize yields and improve cereal grain protein concentration in comparison to sole crops. Species mixtures are complex and the 4C approach is both a pedagogical and scientific way to represent the combination of four joint effects of Competition, Complementarity, Cooperation, and Compensation as processes or effects occurring simultaneously and dynamically between species over the whole cropping cycle. Competition is when plants have fairly similar requirements for abiotic resources in space and time, the result of all processes that occur when one species has a greater ability to use limiting resources (e.g., nutrients, water, space, light) than others. Complementarity is when plants grown together have different requirements for abiotic resources in space, time or form. Cooperation is when the modification of the environment by one species is beneficial to the other(s). Compensation is when the failure of one species is compensated by the other(s) because they differ in their sensitivity to abiotic stress. The 4C approach allows to assess the performance of arable intercropping versus classical sole cropping through understanding the use of abiotic resources.

 

关键词: compensation     competition     complementarity     cooperation     interspecific interactions     land equivalent ratio     light     nutrients     species mixtures     water    

Biopolymer-stabilized emulsions on the basis of interactions between β -lactoglobulin and ι -carrageenan

Qiaomei RU, Younghee CHO, Qingrong HUANG,

《化学科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 399-406 doi: 10.1007/s11705-009-0253-y

摘要: -Carrageenan and -lactoglobulin (-lg) stabilized oil-in-water (O/W) emulsions, which can be used for the oral administration of bioactive but environmentally sensitive ingredients, have been successfully prepared. The effects of protein/polysaccharide ratios, total biopolymer concentration, environmental stress (thermal processing and sonication), and pH on the complex formation between -carrageenan and -lactoglobulin have been investigated. We found that -lactoglobulin and-carrageenan stabilized emulsions can be formed at pH values of 6.0, 4.0, and 3.4. However, the microstructures of emulsions stabilized by -lactoglobulin and -carrageenan was identified by optical microscopy, and it indicated that the emulsion prepared at pH 6.0 flocculated more extensively, while its hydrodynamic radius was much bigger than those prepared at pH 4.0 and 3.4. Regarding rheological properties, the emulsion of pH 6.0 showed a more solid-like behavior but with a lower viscosity than those of pH 4.0 and 3.4. The optimum concentration ranges for -lg and-carrageenan to form stable emulsions at pH 4.0 and 3.4 were 0.3wt-%―0.6wt-% and 0.4wt-%―0.7wt-%, respectively.

标题 作者 时间 类型 操作

A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of dropletdroplet interactions

期刊论文

Comparison of droplet distributions from fluidic and impact sprinklers

Xingye ZHU,Shouqi YUAN,Junping LIU,Xingfa LIU

期刊论文

Pt–C interactions in carbon-supported Pt-based electrocatalysts

期刊论文

Analysis of the radiation heat transfer process of phase change for a liquid droplet radiator in space

Jinying YIN, Linhua LIU

期刊论文

Modeling and simulation of droplet translocation and fission by electrowetting-on-dielectrics (EWOD)

Nathan HOWELL, Weihua LI

期刊论文

Dynamical analysis of droplet impact spreading on solid substrate

Zhaomiao LIU, Huamin LIU, Xin LIU,

期刊论文

Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic

Jingtao WANG, Jin ZHANG, Junjie HAN,

期刊论文

Numerical study of droplet dynamics impinging onto steel plate covered with scale layer

Jan BOHá?EK, Ale? HORáK

期刊论文

Responses of microbial interactions to elevated salinity in activated sludge microbial community

期刊论文

Effect of UAV prewetting application during the flowering period of cotton on pesticide droplet deposition

Weixiang YAO, Xianju WANG, Yubin LAN, Ji JIN

期刊论文

Water, energy and food interactions–Challenges and opportunities

Gustaf OLSSON

期刊论文

Microfluidics for cell-cell interactions: A review

Rui Li,Xuefei Lv,Xingjian Zhang,Omer Saeed,Yulin Deng

期刊论文

SUSTAINABLE CROP AND PASTURE SYSTEMS: FROM ABOVE- AND BELOWGROUND INTERACTIONS TO ECOSYSTEM MULTIFUNCTIONALITY

期刊论文

THE 4C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY

期刊论文

Biopolymer-stabilized emulsions on the basis of interactions between β -lactoglobulin and ι -carrageenan

Qiaomei RU, Younghee CHO, Qingrong HUANG,

期刊论文